remakes the EEG for our modern world (and soon, off-world)

Figuring out what’s going on in the brain is generally considered to be somewhere between extremely difficult and impossible. One major challenge is that the best ways to do so are room-sized machines relegated to hospitals — but is hoping that its portable, powerful, and most importantly user-friendly EEG helmet (plus $8.5M in funding) could power new applications and treatments at home and — as a sort of cork pop for its debut — in space.

Electroencephalography, or EEG, is an established method for monitoring certain signals the brain produces, and which can indicate which areas of the cortex are active, whether the user is concentrating, agitated, and so on. It’s not nearly as precise as an MRI, but on the other hand all you need for an EEG is a set of electrical contacts on the scalp, while an MRI machine is huge, loud, and incredibly expensive.

There’s been precious little advancement in EEG tech, though, and it’s often done more or less the same way it was done decades ago. Recently that’s begun to change with devices like Cognixion’s, which uses re-engineered EEG to interpret specific signals with a view to allowing people with motor impairments to communicate.

The Israel-based (styled in lowercase, with a period in it, specifically to vex reporters) has its own take on EEG that it claims not only provides superior readings to traditional ones, but is wireless and can be set up without expert help.

“It was designed to be the most effective, cheapest, easiest to use EEG acquisition headset in the world. One headset, for multiple people, that automatically configures itself perfectly to each one’s head,” said CEO and co-founder Yair Levy. In development for four years, the headset has 460 sensors and is “fully automated” in that it can be set up and run very simply.

A person wearing the headset working at a computer.

Not exactly stylish, but other EEG setups are even worse. The armband is an ISS-related power regulator. Image Credits:

As it is only just emerging from stealth, the company has no peer-reviewed documentation on the headset’s efficacy and resolution. “But we recently kicked off research activities with several academic institutes, including the Department of Cognitive and Brain Science of Ben Gurion University, as well as a medical center in Israel,” Levy said.

The fact is it would be hard not to improve on the EEG setups being used in many labs — if it did more or less what they did in a portable, user-friendly form, that would be enough to celebrate.

The science of EEG is well understood, but the company has improved on existing designs by including more densely packed electrodes, and ones that fortunately do not require any kind of conductive gel or oil on the skin — anyone who’s had their head oiled up to take part in an experiment can testify that this is not fun.

Because of the nature of EEG signals, these sensors will overlap somewhat, but Levy explained that their internal studies have found that these signal overlaps follow a power law, meaning they can be computationally disambiguated. That means a clean data output that can be interpreted by and used as training material for machine learning systems.

Although the headset is obviously a big piece of the puzzle, the company won’t only be making and distributing it: “Our vision is to provide a comprehensive software end-to-end stack that makes working and integrating brain activity as easy as integrating GPS or fitness data,” said Levy.

Image Credits:

Of course, wearing a helmet that makes you look like Marvin the Martian isn’t something you’ll do on your morning run, or even while riding your stationary bike or standing at your desk. It’s still very much a situational medical device. But like other advances in technology that have brought medical monitoring devices to the home, this can still be transformational.

“We see this as asking what putting a cheap GPS in an iPhone would be good for,” Levy explained. “The obvious answer was mapping, but the reality was that developers did far more innovative things with it than just road directions. That’s how we see our job, to allow innovation to occur around brain activity, not build out the use-cases ourselves.”

Of course if they didn’t have any use cases in mind, they would never have been able to fund four years of R&D. But they’re looking into things like tracking learning disabilities, markers for cognitive declines from diseases like Alzheimers, and also athletic performance. The cost of the headset will vary depending on the application and requirements, the company told me, though they would not provide further details. For reference, bargain-bin setups go for under a grand, while medical-research-grade ones run into the $10K range, and would likely fall in between.

The first public demonstration of the tech is about as flashy as you could imagine: an experiment set on the International Space Station. is taking part in Axiom-1, the first fully privately funded mission to the ISS, which will have a host of interesting experiments and projects on board.

Participants in the study will use the headset on the surface while performing a number of tasks, then repeat those tasks with variations while aboard the ISS. The company described the reasoning for the experiment as follows: has set itself the goal to become the standard for monitoring neuro-wellness in space.

While there is data collection being carried out for various physiological measurements, such as heart rate, galvanic skin resistance, and muscle mass, there is currently no high-quality longitudinal data regarding the neural changes in prolonged space missions. Such information can be vital in assessing day-to-day plastic changes in the brain and predicting how the brain will adapt to long-term space travel.

Naturally they’re not the first to think of this — NASA and other space agencies have done similar experiments for years, but as points out, those were with pretty old-school gear. This is not only potentially a test of cognitive function in space, but a proof of the idea that cognitive function in space can be tested with relatively little trouble. No one wants to grease up their scalp for a weekly cognitive load test on a 3-month trip to Mars.

In addition to the headset and experiment, announced it has raised an $8.5 million seed round led by Mangrove Capital Partners (no other participants named). It isn’t cheap doing medical device R&D, but there’s almost certainly a market for this in and beyond telehealth and performance monitoring. We should hear more about the headset’s specific advantages as it enters more public testing.

‘It’s almost like placing an IV’: Brain monitoring electrode receives FDA 510(k) clearance

An FDA pathway that’s greased the gears for COVID-19 vaccines and drugs has paved the way for something else: a new take on electroencephalography (EEG), the established brain-monitoring technique in which metallic electrodes are placed on the scalp to measure the brain’s electrical activity. 

On May 17, DC-based startup iCE Neurosystems announced a version of FDA approval for a subcutaneous electrode called iCE-SG, designed to monitor the brain’s electrical activity from beneath the skin of the scalp. That electrode comes on the back of a 2020 Emergency Use Authorization (EUA) for iCE Neurosystems’ software platform called iCEWav, which was used in a D.C. area hospital to monitor the brain activity of patients in medically-induced comas during the Covid-19 pandemic. 

iCE Neurosystems electrode and software are, essentially, a new take on traditional EEG. The electrode is designed to sit beneath the scalp for days and analyze brain activity, and the software component is designed to integrate that data with vital signs like heart rate or blood pressure. 

“For the first time we’ve got this massive, high-fidelity, continuous, integrated data set from both brain and body,” says Alan Waziri, a neurosurgeon and company co-founder. “That allows us to really understand what’s happening in the brain to drive timely clinical decisions, and fundamentally change outcomes for these patients.” 

iCE was founded by Waziri and colleagues from his time as a resident at Columbia University Medical Center in 2017. As of 2021, the company has nine fulltime employees, and has raised a total of $4.5 million, including a recent round of $2.95 million from private investors in April 2021. 

The subcutaneous electrode and software combination is part of iCE Neurosystems bigger picture: to create a full platform for continuous monitoring of the brain. 

There are examples of use cases where continuous monitoring may prove beneficial. For instance, a 2019 New England Journal of Medicine study suggested that specialized EEG monitoring might detect signs of consciousness in otherwise unresponsive patients. That study was authored by Jan Claassen the director of Critical Care Neurology at Columbia who is also co-founder and minority shareholder at iCE Neurosystems. 

Another 2019 paper suggests that continuous monitoring via EEG was associated with fewer deaths in hospitals. But only 22,728 of the over 7 million people analyzed in the study had access to continuous EEG. 

Waziri’s aim is to increase that number. Subcutaneous electrodes, he’s betting, are a first step. The iCE-SG electrodes should be easy to install and don’t require the technical expertise usually required to prepare and administer an EEG, explains Waziri. Other scientists have also noted technical expertise needed to use and interpret traditional EEG is cumbersome and has stood in the way of long-term EEG monitoring. 

FDA approval documents note that the iCE-SG devices are approved to remain beneath the skin for 14 days, but Waziri says he’s obtained continuous monitoring of brain activity for up to 35 days. A long-term EEG analysis, by comparison, might last several days. 

“It’s almost like placing an IV,” Waziri says. “Basically a routine clinician at the bedside can place these in under five minutes.”

On the other hand, the platform alone can’t address the need for expertise to interpret this data. Waziri’s answer to that question is to make this data shareable.

Within a hospital, data collected by platform is stored on the cloud. However, a hospital could opt into sharing data on another platform iCECloud Knowledge with other medical institutions. 

“From participating institutions, all the data we collect gets put in there and is made available to anyone who is using our system,” he says. “Our goal is to almost kind of crowdsource the analysis of the data.”

So far, iCENeurosystems has pursued two forms of FDA approval for the software and the electrode. 

The electrode and the full platform have received FDA premarket approval through the 510(k) pathway – a type of pre-market approval that allows a medical device to go to market without additional FDA review because it’s substantially similar to other products already on the market (In this case, that tech is a traditional EEG). The iCEWav system was granted 510(k) approval in March 2020 and the electrode received it in March 2021

This pathway is one of the most expedient ways to get a medical device onto the market, but has also faced criticism because it doesn’t require a device to be tested for safety or efficacy through clinical trials. Waziri says there “haven’t been any complications” from the devices. 

Additionally, iCEWave has done time in the clinical setting in a major D.C. hospital, though Waziri won’t disclose which one. 

In early 2020, the DC based startup iCE Neurosystems was in the midst of testing iCEWav when the pandemic hit. Some Covid-19 patients required intense cardiopulmonary support that required use of medically induced comas. Technicians typically use EEG to monitor these patients, but iCE Neurosystems also received a trial run, says Waziri, as the hospital was looking for long-term methods of monitoring patients brain activity without having technicians visit multiple times per day. 

“They had our system in place because we were running a clinical trial in patients with cardiac arrest, and they asked us if they could use the system for monitoring their critically ill COVID patients. They actually applied to the FDA and the FDA granted emergency use authorization for the software,” Waziri says. 

So far Waziri and iCENeurosystems hasn’t published any peer-reviewed data from that trial at the D.C. area hospital, but he says the company has two forthcoming manuscripts. 

Meanwhile, Waziri says that iCE Neurosystems is working towards getting more devices into more hospitals. He says they’re in talks with an additional five hospitals, with the goal of beginning a Series A funding raise in mid 2022.